

CONTENT

- > General Features
- > Creating a Power Group
- > Wiring Types
- > Sync Settings
- > Data Visualization
- > Harmonics & Interharmonics
- > Higher Frequency Grouping
 - Supraharmonics
- > Voltage Fluctuation
- > Flicker
- > Rolling Computations
- > Mechanical Power
- dQ Analysis
- > Delay Compensation

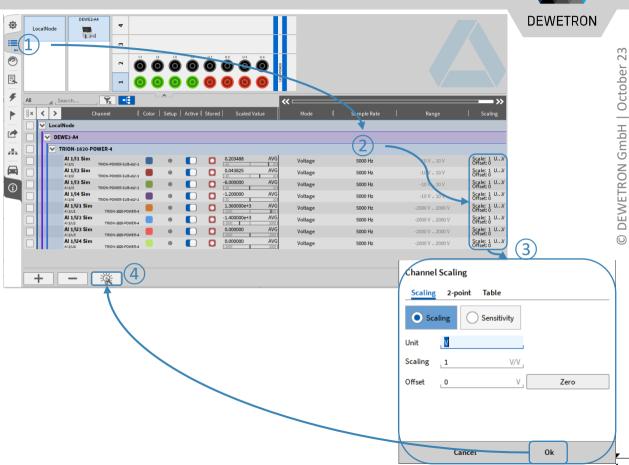
© DEWETRON GmbH | October 23

GENERAL FEATURES

Benefits of a DEWTRON POWER ANALYZER

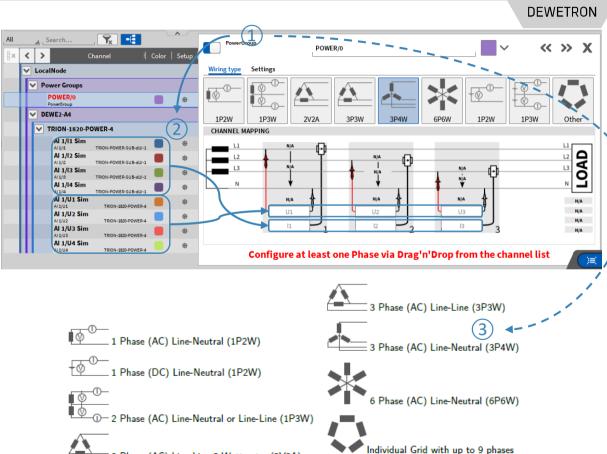
- > Full flexible input configuration
- > Simple setup within seconds
- > Individual phase groups (up to 9 phases per PowerGroup)
- > Free selectable sync channel
- > Unlimited recording (only limited by harddisk space)

Туре	Hardware	Bandwitdh	Samplerate	Phasecount
DEWE3-PA8	TRION3-1810M-POWER-4	5 MHz	10 MS/s	16
DEWE2-PA7	TRION-1820-POWER-4	5 MHz	2 MS/s	12
DEWE2-A7	TRION-1820-POWER-4	5 MHz	2 MS/s	12
DEWE2-A4L	TRION-1820-POWER-4	5 MHz	2 MS/s	8


In addition to the great measurement functions of OXYGEN, the POWER-Option enables the detailed analysis of the phase values and total values in L-N configuration (each total and fundamental):

- Voltage (RMS, AVG, PHI, Peak-Peak) → OPT-POWER-BASIC
- > Current (RMS, AVG, PHI, Peak-Peak) → OPT-POWER-BASIC
- > Active Power (AVG, PHI) → OPT-POWER-BASIC
- Reactive Power (AVG) → OPT-POWER-BASIC
- > Apparent Power (AVG) → OPT-POWER-BASIC
- > Power Factor (AVG) → OPT-POWER-BASIC
- > Fundamental Frequency (0.2 200 kHz) → OPT-POWER-BASIC
- > Harmonics (up to 1000th order) → OPT-POWER-ADV
- > Interharmonic (up to 1000.5th order) → OPT-POWER-ADV
- > Higher Frequencies (2-9 kHz Grouping) → OPT-POWER-ADV
- > Voltage Fluctuation → OPT-POWER-ADV
- > Flicker Emission → OPT-POWER-ADV
- > Mechanical Power Computation → OPT-POWER-ADV
- > Rolling Computations → OPT-POWER-EXP

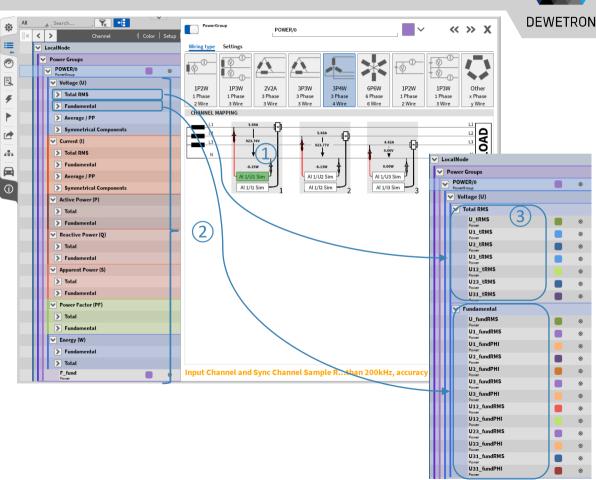
CREATING A POWER GROUP


- ① Open the Channel List
- 2 Select the desired Sample Rate (min. 10 kHz, calculation disabled below)
- If current transducers are used, open the scaling menu of the current channel and enter the scaling factor
- 4 Press the Add Power Group button

POWER GROUP SETTINGS – WIRING TYPE

- Select the correct Wiring type of the DUT
 Wiring schematics below will
 demonstrate the individual wiring
- Assign the current and voltage channels from the Channel List to the Power Group via drag and drop
- Overview of the predefined schematics available here;
 Additional information and connection schemes can be found in the manuals

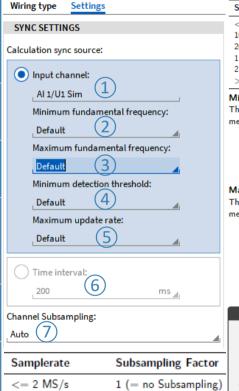
3 Phase (AC) Line-Line 2-Wattmeter (2V2A)


October

P.DEWETROW GmbH

CREATING A POWER GROUP

- After drag and dropping all channels into the schematics, a value preview will be available
- The calculated power values will be automatically added as separate channels to the Channel List
- Single channel's phase values and total values in L-N configuration can be accessed by further expanding the Channel List;
 Listed channels will depend on the Wiring type


Creation of several and different Power Groups in one setup supported

POWER GROUP SYNC SETTINGS

- Synchronization Channel for fundamental frequency detection; Freely definable, per Default Voltage of Phase 1
 - Minimum fundamental frequency input field (0.2 Hz f_{max})
- (3) Maximum fundamental frequency input field (f_{min} 0.1*SR [Hz])
- Threshold of the amplitude of the synchronization channel that needs to be exeeded for fundamental frequency detection, per default >0.1%
- (5) Maximum update rate of the output channels, 1ms per default; 1 ... 5000 ms
- 6 For DC applications, Update rate for power calculations
- Subsampling factor selection for calculation load reduction

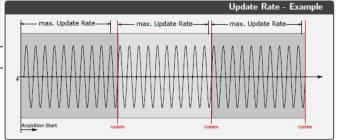
> 2MS/s - 4 MS/s

> 4MS/s - 6 MS/s > 6MS/s - 8 MS/s

> 8MS/s

Samplerate	Minimum Fundamental
< 10 kHz	None
10 kHz - 20 kHz	0.2 Hz
20 kHz - 1 MHz	0.2 Hz
1 MHz - 2 MHz	0.5 Hz
2 MHz - 4 MHz	1 Hz
> 5 MHz	2 Hz

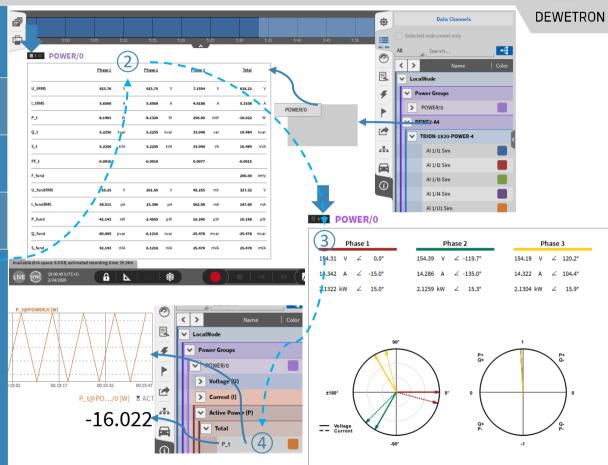
Minimum fundamental frequency


This input field holds the setting for the minimum fundamental frequency in Hz which can be measured (lower limit). The following settings are available:

- Default: Standard setting, uses 0.2 Hz internally (up to 1MS/s) and >0.5 Hz above. The actual value is the lower bound of the F fund channel range.
- 0.2 .. f max Hz: User defined setting, the possible range is between Default and 100 Hz.

Maximum fundamental frequency

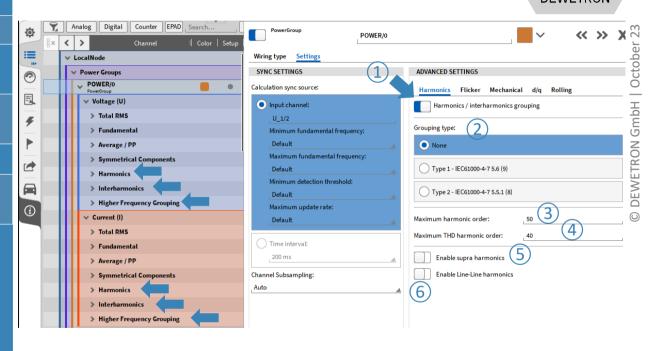
This input field holds the setting for the maximum fundamental frequency in Hz which can be measured (upper limit) The following settings are available:

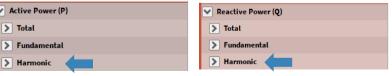

- Default: Standard setting, uses 1500 Hz internally (>20 kS/s). The actual value is the upper bound of the F fund channel range.
- Auto: Uses 1/10 of Samplerate
- f_min .. Samplerate/10 Hz: User defined setting, the possible range is between f_min and 1/10 of Samplerate.

DATA VISUALIZATION

- Power instrument for general data overview
- ② Drag and drop Power group to the instrument to get an RMS value overview
- 3 Or a vectoral visualisation of the voltages and currents
- All Power channels can be added to others displays like Recorders or Meters

© DEWETRON GmbH | October 23

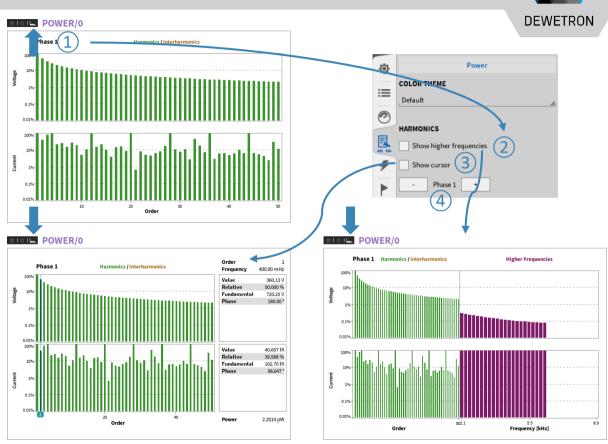

HARMONICS



- 1 | Enable Harmonics calculation
- ② | Select a harmonics grouping type
- 3 | Specify the maximum harmonics order 1 ... 1000; Default: 50
- 4 Specify the maximum THD harmonics order; 1 ... 1000; Default: 40
- 5 Optionally enable supra harmonics
- 6 Optionally enable calculation of Voltage Line-Line Harmonics & THD

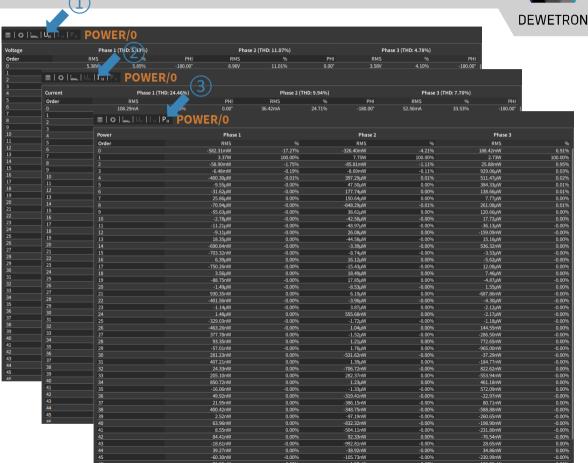
OXY-OPT-POWER-ADV required

- > Harmonics from 0 to 1000thorder
- > Interharmonics from 0.5 to 49th order
- > Higher Frequencies from 2 to 9 kHz
- > Supraharmonics from 8 to 150 kHz
- > Calculations comply with IEC 61000 4-7



HARMONICS VISUALIZATION

- Additional window in the Power Instrument for Harmonics
- ② Higher frequencies can be enabled in instrument settings
- 3 Cursors can be enabled in instrument settings
- (4) Harmonics can be displayed phase-wise

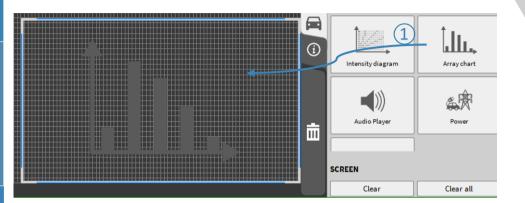


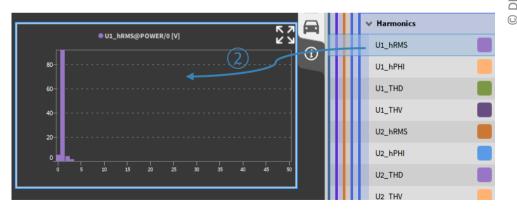
DEWETRON GmbH | October 23

HARMONICS VISUALIZATION CONT'D

- 1 Voltage Harmonics table included in Power Instrument
- 2 Current Harmonics table included in Power Instrument
- Power Harmonics table included in Power Instrument

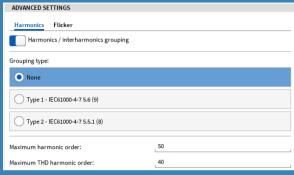
HARMONICS VISUALIZATION CONT'D

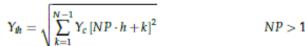

① Drag and drop the Aray Chart to the screen...

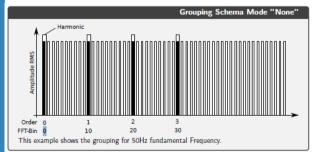

2

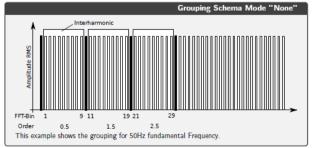
...and assign any Harmonics channel

Supports:


- Harmonics
- Interharmonics
- Higher Frequency Groupings
- Supraharmoncis

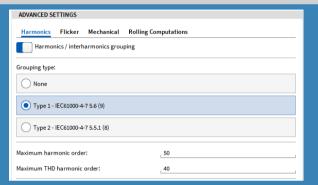

GROUPING MODE - NONE



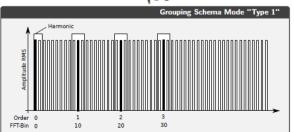


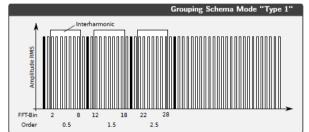
Symbol	Description
Y_c	RMS Magnitude of FFT-Bin
Y_h	RMS Magnitude of Harmonic Order h (Grouping "None")
$Y_{sg,h}$	RMS Magnitude of Harmonic Order h (Grouping "Type 1")
$Y_{g,h}$	RMS Magnitude of Harmonic Order h (Grouping "Type 2")
ŇΡ	Number of fundamental Periods
h	Harmonic Order

- > When this mode is selected, only the harmonic bins are taken for generation of the harmonic data. $Y_h = Y_c[NP \cdot h]$
- > When this mode is selected, all bins (except of harmonic bin) are taken for generation of the interharmonic data. $Y_n = NaN$



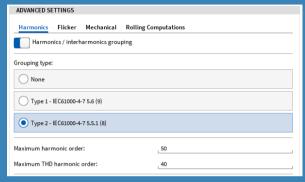
GROUPING MODE - TYPE 1 – IEC61000-4-7-5.6


Symbol	Description
Y_c	RMS Magnitude of FFT-Bin
Y_h	RMS Magnitude of Harmonic Order h (Grouping "None")
$Y_{sg,h}$	RMS Magnitude of Harmonic Order h (Grouping "Type 1")
$Y_{g,h}$	RMS Magnitude of Harmonic Order h (Grouping "Type 2")
NP	Number of fundamental Periods
h	Harmonic Order

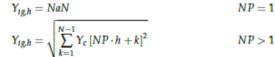

> When this mode is selected, the harmonics are grouped according to IEC61000-4-7 Section 5.6

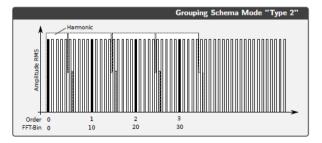
$$\begin{split} Y_{sg,h} &= Y_c[NP \cdot h] & NP < 2 \\ Y_{sg,h} &= \sqrt{\sum_{k=-1}^{1} Y_c[NP \cdot h + k]^2} & NP >= 2 \end{split}$$

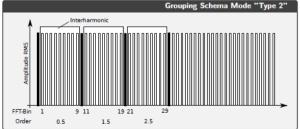
> When this mode is selected, the Interharmonics are grouped according to IEC61000-4-7 Section 5.6


$$Y_{lsg,h} = NaN$$
 $NP \le 2$
 $Y_{lsg,h} = \sqrt{\sum_{k=2}^{N-2} Y_c [NP \cdot h + k]^2}$ $NP > 2$

GROUPING MODE - TYPE 2 – IEC61000-4-7-5.5.1

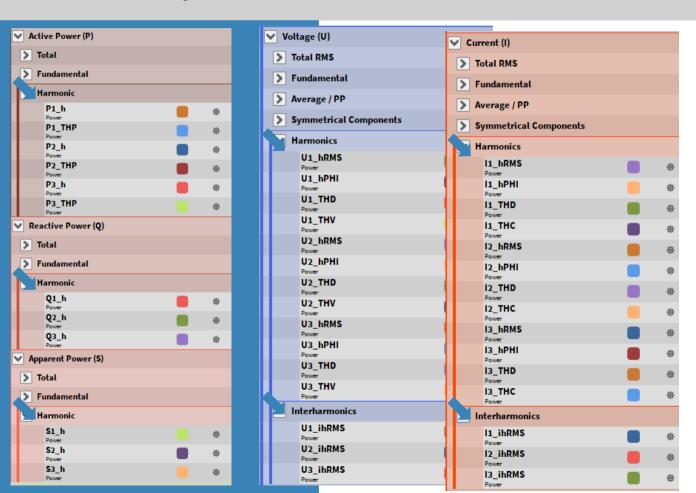


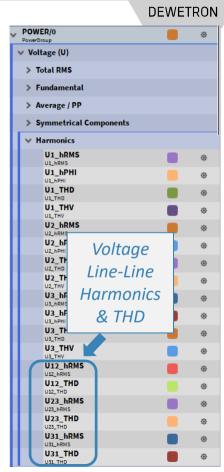

Symbol	Description
Y_c	RMS Magnitude of FFT-Bin
Y_h	RMS Magnitude of Harmonic Order h (Grouping "None")
$Y_{sg,h}$	RMS Magnitude of Harmonic Order h (Grouping "Type 1")
$Y_{g,h}$	RMS Magnitude of Harmonic Order h (Grouping "Type 2")
NP	Number of fundamental Periods
h	Harmonic Order


When this mode is selected, the harmonics are grouped according to IEC61000-4-7 Section $\sum_{NP < 2} \frac{Y_{NP}}{(7.4)} = \frac{1}{N} \frac{NP < 2}{(7.4)}$

5.5.1
$$Y_{gh} = Y_{c}[NP \cdot h] \qquad NP < 2 \quad (7.4)$$
$$Y_{gh} = \sqrt{\frac{1}{2}Y_{c}\left[NP \cdot h - \frac{N}{2}\right]^{2} + \sum_{k=\frac{N}{2}+1}^{\frac{N}{2}-1} Y_{c}\left[NP \cdot h + k\right]^{2} + \frac{1}{2}Y_{c}\left[NP \cdot h + \frac{N}{2}\right]^{2}} \qquad NP > = 2 \quad (7.5)$$

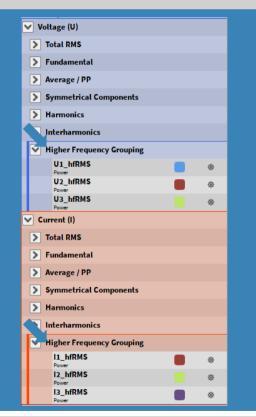
> When this mode is selected, all bins (except of harmonic bin) are taken for generation of the interharmonic data. $Y_{lgh} = NaN$





DEWETRON GmbH | October 23

HARMONICS/INTERHARMONICS - OUTPUT CHANNELS



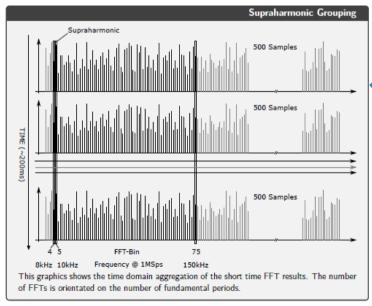
HIGHER FREQUENCY GROUPING

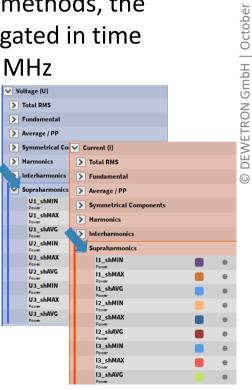


 $\begin{array}{ll} \textbf{Symbol} & \textbf{Description} \\ Y_{C,f} & \text{RMS Magnitude of FFT-Bin} \\ Y_{B,b} & \text{RMS Magnitude of Higher Frequency Order b} \end{array}$

> The Higher Frequency Grouping is orientated on fixed frequency bands (see IEC/EN61000-4-7 Appendix B)

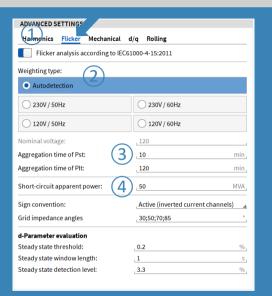
$$Y_{B,b} = \sqrt{\sum_{f=b-95Hz}^{b+100Hz} Y_{C,f}^2}$$


DEWETRON


SUPRAHARMONICS

ADVANCED SE	TTINGS	
Harmonics	Flicker Mechanical Rolling Computations	
Harmon	ics / interharmonics grouping	
Grouping type:		
None		
Type 1 - I	EC61000-4-7 5.6 (9)	
Type 2 - IEC61000-4-7 5.5.1 (8)		
Maximum harm	nonic order:50	
Maximum THD harmonic order:40		
Enable	supra harmonics	
Symbol	Description	
$Y_{C,b}$	RMS Magnitude of FFT-Bin b	
$Y_{SH,i,min}$	Minimum RMS Magnitude of Supraharmonics order i	
Y _{SH,i,avg}	Average RMS Magnitude of Supraharmonics order i	
Y _{SH,i,max}	Maximum RMS Magnitude of Supraharmonics order i	
NP	Number of fundamental periods (10 @ 50Hz, 12 @ 60Hz)	
N_{FFT}	Number of Short Time FFTs in time interval of NP	
SR	Samplerate	

$$\begin{split} N_{FFT} &= \frac{\frac{NP}{F_{fund}} \cdot SR}{500} \\ Y_{SH,b,min} &= min(Y_{C,b}) \\ Y_{SH,b,avg} &= avg(Y_{C,b}) \\ Y_{SH,b,max} &= max(Y_{C,b}) \end{split}$$


- > Unlike the other grouping methods, the Supraharmonics are aggregated in time
- > Minimum Sample rate = 1 MHz

VOLTAGE FLUCTUATION AND FLICKER EMISSION

Working conditions for voltage fluctuation:

Measurement parameters according to IEC61000-4-15 and IEC61400-21
Section 7.3.

Flicker Analysis procedure

- > Switch on the Feature $\widehat{(1)}$
- > Select the Weighting Type ② for your Application. Use Autodetection in low voltage grids (120V/230V). If you want to use the Voltage Fluctuation Algorithm outside these Conditions, please select the weighting type manually and insert the nominal voltage in ③
- Change the Aggregation Time of Pst and Plt if needed (4)
- Go back to Measurement Screen, take an indicator instrument and assign the U[i]_fluc_ready Channel
- Take a Table Instrument and assign the U[i]_fluc_Pst Channels or any other Instrument to visualize the Voltage Fluctuation Values
- > Wait for Channel Ready
- Start the Recording

Ň GmbH DEWETRON

VOLTAGE FLUCTUATION AND FLICKER EMISSION

Output Channels: 9.5.1 U[i]_fluc_Pst

The short-term flicker severity

9.5.2 U[i]_fluc_Plt

The long-term flicker severity

Parameters according to

$$U[i]_fluc_Plt = \sqrt[3]{\frac{1}{N}\sum_{k=0}^{N-1}U[i]_fluc_Pst[k]^3}$$

Unit : A

(9.7)

IEC61000-4-15 and IEC61400-21 Section 7.3.

13_fluc_ready

13 fluc Pinst 30

13 fluc Pst 30

I3_fluc_Plt_30

13_fluc_Pinst_50

I3_fluc_Pst_50

I3_fluc_Plt_50

13_fluc_Pinst_70

I3_fluc_Pst_70

I3_fluc_Plt_70

13 fluc Pinst 85

13 fluc Pst 85

13_fluc_Plt_85

9.5.3 U[i] fluc Pinst

The instantaneous flicker sensation

9.5.4 U[i]_fluc_ready

Indicator value for steady state of algorithm filters

9.5.5 [[i]_fluc_Pst_[ψ]

The short-term flicker emission severity according to IEC61400-21 Section. $\psi \in [30^{\circ}, 50^{\circ}, 70^{\circ}, 85^{\circ}]$

9.5.6 I[i] fluc Plt [ψ]

The long-term flicker emission severity. $\psi \in [30^\circ, 50^\circ, 70^\circ, 85^\circ]$

9.5.7 I[i]_fluc_Pinst_[ψ]

The instantaneous flicker emission sensation. $\psi \in [30^{\circ}, 50^{\circ}, 70^{\circ}, 85^{\circ}]$

9.5.8 U[i]_fluc_dc

Steady state voltage change

9.5.9 U[i]_fluc_dmax

Maximum voltage change during a voltage change characteristic

9.5.10 U[i]_fluc_td

Duration of Voltage change below 3.3%.

FLICKER EMISSION – THEORETICAL BACKGROUND

Sign convention:

Grid impedance angles

d-Parameter evaluation

Steady state threshold:

Steady state window length:

Steady state detection level:

Laccording Passive

Joseph Control of Control of

This is the short circuit power of the fictitous grid. To be given for one phase in MVA!

 U_N Nominal Voltage (U_{L-N}) of the analyzed grid.

Phase Angle of the Grid Impedance (pre-defined with 30/50/70/85 deg)

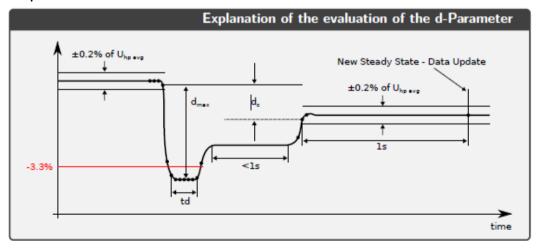
 R_{fic} Fictiteous Ohmic impedance

Fictiteous Reactive impedance

Nominal Frequency (50 or 60 Hz, depending on the selected Weighting)

$$S_{K,fic} = \frac{U_N^2}{\sqrt{R_{fic}^2 + X_{fic}^2}}$$
 Unit: VA

$$Z_{fic} = \sqrt{R_{fic}^2 + X_{fic}^2} = \frac{U_N^c}{S_{K,fic}}$$
 Unit : Ω

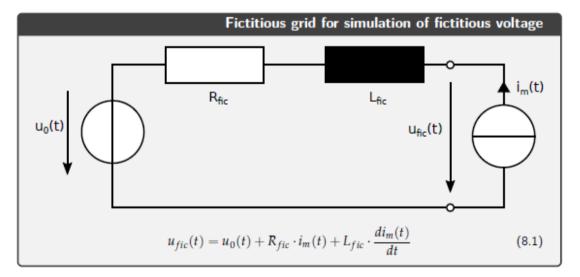

 $R_{fic} = Z_{fic} \cdot cos(\psi_K)$ Unit : Ω

 $X_{fic} = Z_{fic} \cdot sin(\psi_K)$ Unit: Ω

 $L_{fic} = \frac{X_{fic}}{2 \cdot \pi \cdot f_N}$ Unit: H

Short Term Voltage fluctuations evaluate the voltage change characteristics according to IEC61000-4-15. For this analysis, the half-period rms values from the voltage channels are calculated internally.

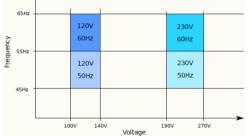
Explanation of the evaluation of the d-Parameter



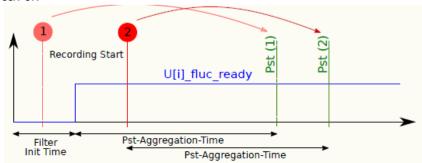
d-Parameters can be modified since Oxygen 6.6

VOLTAGE FLUCTUATION – THEORETICAL BACKGROUND

> Flicker Emission is the Analysis of the virtually generated voltage fluctuation caused by the emitted current. This analysis procedure is described in the IEC61400-21 Standard. It uses a fictitious grid for simulation of a fictitious voltage, which is then processed with the flicker algorithm to get the Pst, fic.

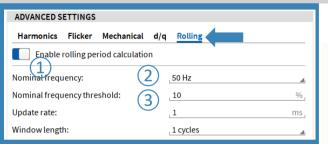


FLICKER ANALYSIS – AUTO DETECTION & AGGREGATION TIME



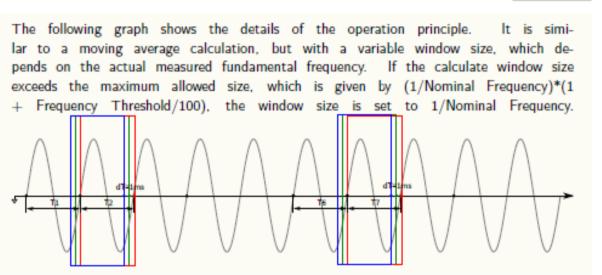
ADVANCED SETTINGS		
Harmonics Flicker		
Flicker analysis according to IEC61000-4-15:2011		
Weighting type:		
Autodetection		
230V / 50Hz	230V / 60Hz	
120V / 50Hz	120V / 60Hz	
Nominal voltage:	230 V	
Aggregation time of Pst:	_10 min_	
Aggregation time of Plt:	120 min_	
Short-circuit apparent power:	50 MVA	

The Auto-Detection Mode is useful for the most applications. In the following graph you can see, which Mode is applied under different circumstances.



Pst/Plt Aggregation Time: If the Recording is started before ready (1), the aggregation is started when ready. When recording is started while ready (2), the aggregation will be started with the recording start..

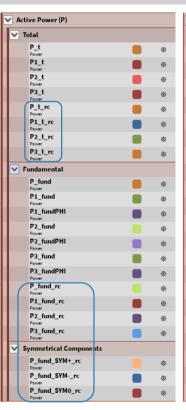
ROLLING COMPUTATIONS - GENERAL



Enable/Disable Rolling Calculation

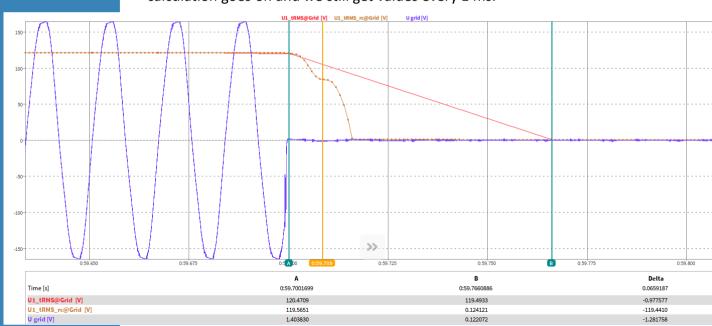
(1)

- Selector for nominal frequency fallback
- Input field for frequency threshold. If a frequency is detected within the nominal frequency threshold %, the rolling window size is the actual period duration. Otherwise, e.g. in the case of a voltage interruption, where no frequency can be measured, the window size is the inverse nominal frequency.

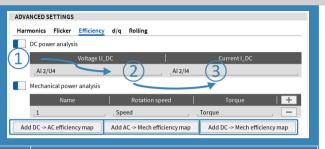


Usecase: Testing of Renewable Energy Sources according to IEC 61400-21 and FGW-TR3 where some tests require the analysis of fast transitions

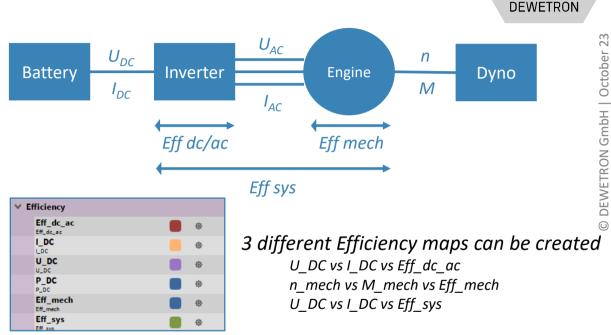
ROLLING COMPUTATIONS – OUTPUT CHANNELS



ROLLING COMPUTATIONS – EXAMPLE 60 HZ GRID

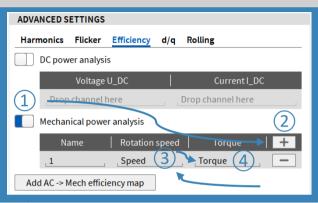


> Whenever the voltage drops the frequency cannot be detected anymore and the calculation interval switches to a fixed time. The last calculated value (U1_tRMS in figures) can be seen at marker A and the next calculated value of the fixed time at marker B. Therefore, there is no information available during the drop, neither are correct values. For the rolling computations (with extension _rc) it can be seen though, that the calculation goes on and we still get values every 1 ms.

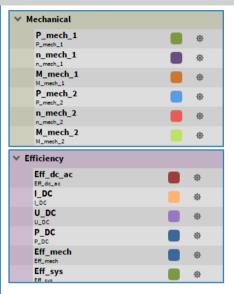

MECHANICAL POWER COMPUTATION + DC-POWER

- 1 Enable/Disable DC power calculation
- 2 Add Voltage U_DC
- 3 Add Current I_DC

The **Efficiency** Tab includes DC Power Analysis and Mechanical Power Analysis


- > Channels are updated every calculation cycle given by calculation sync source (same as electrical power).
- > This way, DC-POWER and AC-POWER are synchronised

OXY-OPT-POWER-ADV required


DEWETRON GmbH | October 23

MECHANICAL POWER COMPUTATION + DC-POWER

- Enable/Disable mechanical power
 calculation
- 2 Add mechanical "phase"
- 3 Input field for rotation speed channel (unit must be rpm)
- (4) Input field for torque channel (unit must be Nm)

$$\begin{split} P_{mech} &= \frac{1}{N} \sum_{n=0}^{N} speed[n] \cdot torque[n] \cdot \frac{2 \cdot \pi}{60} \\ n_{mech} &= \frac{1}{N} \sum_{n=0}^{N} speed[n] \\ M_{mech} &= \frac{1}{N} \sum_{n=0}^{N} torque[n] \\ Eff_{mech} &= \begin{cases} \frac{P_t}{P_{mech}} \cdot 100 & \text{if } P_{mech} < 0 \\ \frac{P_{mech}}{P_t} \cdot 100 & \text{if } P_{mech} > = 0 \end{cases} \end{split}$$

- > Channels are updated every calculation cycle given by calculation sync source (same as electrical power).
- > Up to 6 Mechanical Pairs (n & M) can be added.
- > Each Mechanical Power P_mech_x is added up to P_mech for Efficiency Calculation

DEWETRON GmbH | October 2

DQ-ANALYSIS

ADVANCED SETTINGS	
Harmonics Flicker Mechanical	d/q Rolling
D/Q Analysis 1	
Mechanical angle: angle 2	
Number of poles-pairs: 2 (3)	
Angle offset: 240	4) Detect
Output samplerate: 100 (5)	Hz

- 1 Enable dQ analysis feature
- 2 Assign the angle channel
- 3 Enter th number of pole-pairs according to your engine
- Drive the DUT with an auxikiary engine at constant speed and press the *Detect* button to measure the angle offset or enter it manually
- 5 Define the output rate of the output channels

d-Axis Voltage, reduced with block-wise average to given output samplerate.

$$U_d^* = \frac{2}{3} \cdot \left(U_{1N} \cdot \cos(\theta) + U_{2N} \cdot \cos(\theta - \frac{2\pi}{3}) + U_{3N} \cdot \cos(\theta + \frac{2\pi}{3}) \right)$$

$$U_d = \frac{red_SR}{SR} \cdot \sum_{i=0}^{\frac{SR}{red_SR}} U_d^*$$

 $Unit: \mathbf{V}$

q-Axis Voltage, reduced with block-wise average to given output samplerate.

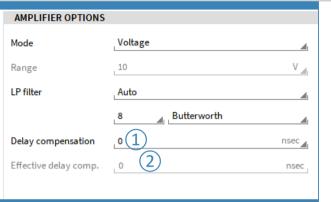
$$U_q^* = \frac{2}{3} \cdot \left(-U_{1N} \cdot sin(\theta) - U_{2N} \cdot sin(\theta - \frac{2\pi}{3}) - U_{3N} \cdot sin(\theta + \frac{2\pi}{3}) \right)$$

$$U_q = \frac{red_SR}{SR} \cdot \sum_{i=0}^{\frac{SR}{red_SR}} U_q^*$$

d-Axis Current, reduced with block-wise average to given output samplerate.

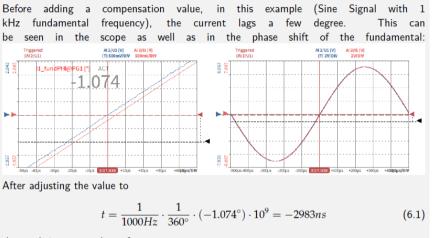
$$\begin{split} I_d^* &= \frac{2}{3} \cdot \left(U_1 \cdot cos(\theta) + I_2 \cdot cos(\theta - \frac{2\pi}{3}) + I_3 \cdot cos(\theta + \frac{2\pi}{3}) \right) \\ I_d &= \frac{red_SR}{SP} \cdot \sum_{c=d_SR}^{\frac{SR}{red_SR}} I_d^* \end{split}$$

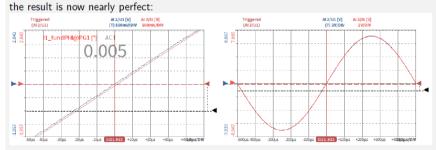
q-Axis Current, reduced with block-wise average to given output samplerate.


$$I_q^* = \frac{2}{3} \cdot \left(-I_1 \cdot sin(\theta) - I_2 \cdot sin(\theta - \frac{2\pi}{3}) - I_3 \cdot sin(\theta + \frac{2\pi}{3}) \right)$$

$$I_{q} = \frac{red_SR}{SR} \cdot \sum_{i=0}^{\frac{SR}{red_SR}} I_{q}^{*}$$

DELAY COMPENSATION – TRION-POWER- CURRENT INPUT




DEWETRON

- 1 Input field for target delay compensation in nanoseconds (ns). Allowed range is +/10000ns. Negative Values shifts the current backwards in time, positive forward.
- Display of effective set delay compensation, the resolution is fixed to 100ns.

Current and voltage signals are often not perfectly synchronous due to group delays from the sensors. To compensate this delay (phase shift) between voltage and current input, a new function was added to the TRION-POWER hardware. This function is also known as Deskew.

DEWETRON

EXERCISE – LET'S DO A ONE-PHASE POWER MEASUREMENT!