TRION(3)-18xx-POWER-4

TRION(3)-18xx-POWER-4

- TRION(3) module for 4-phase power analysis
- Sampling
- TRION3-1810M-POWER: up to $10 \mathrm{MS} / \mathrm{s}$
- TRION3-1820-POWER: up to $2 \mathrm{MS} / \mathrm{s}$
- TRION-1820-POWER: up to $2 \mathrm{MS} / \mathrm{s}$
- Voltage input: 1000 V $_{\text {RMS }} / 2000$ V $_{\text {D }}$
- Modular current input

Basic module with fixed high-voltage inputs

The following section provides detailed information on the fixed high-voltage inputs. The values given below were determined in a standardized test setting ${ }^{11}$.

General specifications

Fixed high-voltage inputs				
Input channels				
Sampling rate / resolution	TRION3-1820-POWER	$100 \mathrm{~S} / \mathrm{s}$ to $2 \mathrm{MS} / \mathrm{s}$	24-bit	
	TRION-1820-POWER			
	TRION3-1810M-POWER	$100 \mathrm{~S} / \mathrm{s}$ to $2 \mathrm{MS} / \mathrm{s}$	24-bit	
		>2 MS/s to $10 \mathrm{MS} / \mathrm{s}$	18-bit	
Input range		$1000 \mathrm{~V}_{\text {RMS }}\left(\pm 2000 \mathrm{~V}_{\text {PEAK }}\right) \mathrm{CF}=2$		
Accuracy ${ }^{1)^{2(3)}}$ - DC - 0.5 Hz to - 1 kHz to 5 - 5 kHz to 1 - 10 kHz to - 50 kHz to	kHz kHz kHz 0 kHz 00 kHz	± 0.02 \% of reading ± 0.02 \% of range ± 0.03 \% of reading ± 0.15 \% of reading ± 0.35 \% of reading ± 0.6 \% of reading $\pm(0.02 \%$ * f) of reading f: frequency in kHz		
Gain drift		$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$		
Offset drift		$5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$		
Typical THD		$-95 \mathrm{~dB}$		
CMRR		>85 dB @ $50 \mathrm{~Hz} ;>60 \mathrm{~dB}$ @ $1 \mathrm{kHz} ;>40 \mathrm{~dB}$ @ 100 kHz		
Bandwidth		5 MHz		
Rated input voltage to earth according to EN 61010-2-30		600 V CAT IV / 1000 V CAT III		
Differential input (floating circuits)		600 V CAT IV / 1000 V CAT III / 2000 V ${ }_{\text {DC }}$ (see Fig. 134)		
Common mode voltage		$1000 \mathrm{~V}_{\text {RMS }}$		
Isolation voltage		$3750 \mathrm{~V}_{\text {RMS }}(1 \mathrm{~min}), 35 \mathrm{kV} / \mu \mathrm{s}$ transient immunity		

Tab. 47: Fixed high-voltage inputs

Fixed high-voltage inputs				
Overvoltage protection	$4250 \mathrm{~V}_{\text {PEAK }}$ or $3000 \mathrm{~V}_{\text {RMS }}(1 \mathrm{~min})$			
Input resistance	5 M ; 2 pF			
Isolation (earth) resistance	100 G ¢ ; 2.5 pF			
Connector	Safety banana sockets			
	SNR	SFDR ${ }^{4}$	ENOB ${ }^{\text {5 }}$	Noise ${ }_{\text {Pp }}$
Sample rate	[dB]	[dB]	[Bit]	[mV]
$0.1 \mathrm{kS} / \mathrm{s}$	126	144	20.6	2.6
$1 \mathrm{kS} / \mathrm{s}$	123	140	20.1	4.5
$10 \mathrm{kS} / \mathrm{s}$	118	137	19.3	9.5
$100 \mathrm{kS} / \mathrm{s}$	110	134	18.0	27.2
1000 kS/s	100	134	16.3	92.5
$2000 \mathrm{kS} / \mathrm{s}$	82	132	13.3	134.0

Tab. 47: Fixed high-voltage inputs

1) The following accuracy conditions were applied: Temperature: $23 \pm 5^{\circ} \mathrm{C}$; humidity: 40 to 60% rel. humidity; input waveform: sine wave; common mode voltage: 0 V ; line filter: Auto ($8^{\text {th }}$ or Butterworth); sample rate: $2 \mathrm{MS} / \mathrm{s}(1 \mathrm{MS} / \mathrm{s}$ TRION-1810HV); resolution: 24-bit; power factor: 1; after warm-up; after zero level, accuracy:
2) Add 0.02% of reading with filter settings OFF
3) Below 1% of range, add 10 ppm of range.
4) SFDR excluding harmonics

Power specifications

Power specifications		
Active power accuracy with $\mathrm{PF}=1^{1)}$ (f: frequency in kHz)	DC	$\pm 0.03 \%$ of reading $\pm 0.03 \%$ of range ${ }^{2)}$
	$0.5 \mathrm{~Hz}-1 \mathrm{kHz}$	± 0.04 \% of reading
	$1 \mathrm{kHz}-5 \mathrm{kHz}$	± 0.2 \% of reading
	$5 \mathrm{kHz}-10 \mathrm{kHz}$	± 0.5 \% of reading
	$10 \mathrm{kHz}-50 \mathrm{kHz}$	$\pm(0.5 \%+0.05 \%$ * f) of reading
Influence of power factor	Add 0.01% f/50 * V(1/PF²-1) f: frequency in Hz	
Typ. channel-to-channel phase mismatch (Voltage-Voltage, Current-Current, Voltage-Current)	<250 ns (0.1 ${ }^{\circ}$ @ $1 \mathrm{kHz}, 0.005^{\circ}$ @ 50 Hz)	
Typical board-to-board phase mismatch - Same board type - Different board type	$<250 \mathrm{~ns}\left(0.1^{\circ}\right.$ @ $1 \mathrm{kHz}, 0.005^{\circ}$ @ 50 Hz) ± 1 sample or $0.2^{\circ} @ 1 \mathrm{kHz}$ (whichever is higher)	
Fundamental frequency - Range - Accuracy DEWE2 - Accuracy DEWE3	$\begin{aligned} & 0.1 \mathrm{~Hz}-200 \mathrm{kHz}(>500 \mathrm{kS} / \mathrm{s}:>0.2 \mathrm{~Hz} ;>1 \mathrm{MS} / \mathrm{s}:>0.5 \mathrm{~Hz} ;>2 \mathrm{MS} / \mathrm{s}:>1 \mathrm{~Hz}) \\ & \pm 0.01 \% \text { of reading } \pm 1 \mathrm{mHz} \\ & \pm 0.005 \% \text { of reading } \pm 1 \mathrm{mHz} \end{aligned}$	
Low pass filter (-3 dB , digital and analog combined) - TRION3-1810M-POWER - TRION(3)-1820-POWER - Filter order and characteristics	100 Hz to 3 MHz freely programmable or OFF 100 Hz to 600 kHz freely programmable or OFF $2^{\text {nd }}, 4^{\text {th }}, 6^{\text {th }}, 8^{\text {th }}$ Bessel or Butterworth	

TRION(3)-18xx-POWER-4

Filter delay compensation	Up to 15μ s the group delay of the selected filter will be automatical- ly compensated. This works for: $-2^{\text {nd }}$ order filter 15 kHz to 1 MHz $-4^{\text {th }}$ order filter 30 kHz to 1 MHz $-6^{\text {th }}$ order filter 60 kHz to 1 MHz
Onboard data buffer	512 MB
Power consumption -	Typ. 13 W, max. 15 W Max. 21 W

Tab. 48: Power specifications

1) Voltage and current channel have a minimum input of 1% range, otherwise individual
2) Add 0.03% of range with no zero level. uncertainty has to be calculated.
